LIT supports local explanations, including salience maps, attention, and rich visualizations of model predictions, as well as aggregate analysis including metrics, embedding spaces, and flexible slicing. It allows users to easily hop between visualizations to test local hypotheses and validate them over a dataset. LIT provides support for counterfactual generation, in which new data points can be added on the fly, and their effect on the model visualized immediately. Side-by-side comparison allows for two models, or two individual data points, to be visualized simultaneously. More details about LIT can be found in our system demonstration paper, which was presented at EMNLP 2020.
No comments:
Post a Comment